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S U M M A R Y  

The application of one plausible restriction, namely that the antiserum be effectively saturated with 
steroid under all assay conditions, is shown to lead to a simple hyperbolic binding function for the 
description of steroid hormone radioimmunoassay standard curves. This model is shown to have distinct 
advantages over conventional models; (a) data evaluation is greatly simplified; (b) further analysis 
of the model enables the precision and sensitivity of an assay to be simply determined for any assay 
conditions and hence provides direct criteria for the establishment of optimised assays. Experimental 
proof of the validity of the model is presented and examples of its application to a variety of steroid 
hormones are given. 

I N T R O D U C T I O N  

Since its introduction [1, 2-] the technique of radioim- 
munoassay (RIA) has been developed into a powerful 
tool, applicable to a wide range of biological sub- 
stance whose nature or low in vivo concentrations 
make them difficult to analyse by any other means. 

where 
Naturally the theoretical aspects of the technique 
have received much attention [-3-5] but hitherto such [-A,] 
mathematical treatments have been complex and 
open to dispute [-6-] because the application of the law 
of mass action in the general case (i.e. without the 
imposition of restrictions) gives rise to unwieldy 
expressions which, for the non-mathematically in- 
clined at least, are difficult to manipulate and inter- 
pret. The purpose of this paper is to show that, for 
homologous assays, i.e. those in which the labelled 
and unlabelled ligand are chemically and immunolo- 
gically indistinguishable (as is the case in steroid hor- 
mone assays), the imposition of one simple, plausible 
restriction reduces the law of mass action functions 
to an expression which is not only simple to manipu- 
late and interpret but also is of practical significance 
in that it predicts optimum experimental conditions 
which are rather different from those commonly 
employed at present. 

Derivation of the model 
where 

Let us impose on our RIA technique the restriction 
that the antibody be effectively saturated (i.e. >99% R 
of available sites occupied) with ligand (labelled or F 
unlabelled) under all assay conditions. It therefore fol- 
lows that, for homologous assays, the proportion of 
sites occupied by labelled ligand is the same as the 
overall (i.e. bound and free) proportion of labelled 
ligand in the assay mixture, i.e. 

[AL-] [-L,] 

[AL-] + [AX] [L,] + [X,]  

but, when the antibody is saturated with ligand, 
[AL]+ [AX]= [A,] hence 

[L, ] 
EAL] = [A,]. (1) 

[L, ] + IX, ] 

= total concentrationof ligand bind- 
ing sites (occupied and unoccu- 
pied); 

[AL-I, fAX] = concentrations of sites occupied by 
ligands L (labelled) and X (unla- 
belled) respectively; 

[L,], [X,] = total concentrations (bound and 
free) of ligands L and X. 

Equation I can be derived formally using the law 
of mass action as shown in the appendix. 

However, in order to measure [AL] it is necessary 
to separate the bound and free l igands--a process 
which is rarely completely efficient. It is our experi- 
ence that, in the commonly employed activated char- 
coal/Dextran procedure, the residual free ligand after 
absorption is a constant fraction of the total free 
ligand, i.e. 

R = K . F  

= residual free ligand (after absorption); 
= free ligand before absorption. For the 

labelled ligand, F = [L,] - fALl;  
K = constant. 
Since a proportion of the residual free ligand will be 
labelled it will be measured along with the bound 
ligand, i.e. 

Lm = [ A L ]  + [Lr] 
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where 
Lm 

ELf] 

Thus 

= measured concentration (bound and resi- 
dual) of labelled ligand; 

= concentration of residual free labelled 
ligand = K([L,] - [ALl). 

Lm = [AL] (I - K) + KEL,]  

EL,] = [At]'(1 - K )  + K [ L , ]  
[L,] + [X,] 

Under  the normal assay conditions of constant 
antibody concentration, labelled ligand concentration 
and charcoal/Dextran concentration, [A,], [Lf] and K 
are all constants and the function is more con- 
veniently written. 

B - -  + c (2) 
L + X  

L/rl = 

where 

B = EA,] (1 - K) [L,] 

C = K [ L , ]  

L and X substitute for [L,] and [X,] 

Derivation of the model requires that the antibody 
be saturated with ligand under all assay conditions. 
The most unfavourable case is that corresponding to 
zero concentration of unlabelled ligand i.e. the con- 
centration of labelled ligand alone must be sufficient 
to saturate the antibody. The conditions for fulfilment 
of this requirement are readily established by plotting 
not the conventional dilution curve but the concen- 
tration curve (e.g. Fig. 1). The linear region as concen- 
tration approaches zero represents the range of anti- 
body concentrations for which the requirement is met oo// 
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Fig. 1. Concentration curves. The concentration curves are 
constructed by determining the amount of bound labelled 
ligand (ordinate) at various antiserum concentrations (the 
total concentration, i.e. bound and free, of labelled ligand 
is constant). Since the absolute concentration of antiserum 
is not known, the abscissa is scaled in relative concen- 
tration (the highest concentration, i.e. stock antiserum 
solution, being unity). The linear region at low concen- 
trations is the range corresponding to effective saturation 
of the antiserum by the labelled ligand. The three curves 
illustrated are for anti-progesterone-ll~BSA-serum (Pr), 
anti-testosterone-7~BSA-serum (T~) and anti-estrone-6,thyr- 
oglobulin-serum (Ex). Note that the anti-estrone-serum has 
a high intercept on the y-axis indicating that the charcoal/ 
Dextran is relatively inefficient at absorbing free estrone. 

for the given amount  of labelled ligand. It is impor- 
tant to note that a consequence of this condition is 
that heterogeneity in the antibody (i.e. sites having 
different affinities) has no effect on the binding func- 
tion. However, it is essential that the assay system 
be at equilibrium and in this respect the kinetic 
aspects of RIA [7] are of crucial importance. 

Validation of  the model. Equation 2 is a hyperbolic 
function having asymptotes of X = - L and Lm = C. 
It has long been recognised that a graph of Lm vs 
X, as produced from RIA standard curve data, is hy- 
perbolic in appearance. This has prompted Kibby 
(personal communication) and Waiters [8] on purely 
empirical grounds, to employ hyperbolic functions as 
an alternative to the conventional logit transform for 
the computerised evaluation of RIA data and in both 
cases superior descriptions of the data were reported. 
However, Waiters employed the general 4-parameter 
hyperbolic function. 

b 
Lm - - -  + a (," + X) s 

(a, b, r and s are empirical constants) 

whereas Kibby employed a 3-parameter function 

K3 
Lm - + K2 

K I + X  

(KI, K2 and Ks are empirical constants) 

which is a special case of the 4-parameter function 
in which s = 1 and is identical in form to equation 
2. When the 4-parameter function is fitted to RIA 
data the parameter s is not usually found to be close 
to unity (Heap, private communication) suggesting 
that it is of some significance. However, the par- 
ameters r and s are such that a change in one can, 
to a large extent, be compensated by a change in 
the other so that the fit may be almost as good even 
when s is constrained to be unity. 

Furthermore, Waiters (loc. cit.) reports that, when 
using the 4-parameter function, "'the convergence pro- 
cess . . . .  failed with some assay data due to steadily 
increasing values of r and s" so that no satisfactory 
fit was obtained. Several sets of such non-convergent 
data have been made available to us and in each case, 
satisfactory standard curves were obtained (Fig. 2) 
when the 3-parameter function was employed. Thus, 
in view of the fact that derivation of equation 2 pro- 
vides no explanation for the parameter s it would 
appear to be superfluous. 

However, the ability to "fit" experimental data, 
though a necessary condition for validating a model, 
is not sufficient in itself and we have therefore sought 
additional experimental evidence. The derivation of 
equation 2 predicts that all three parameters, B, C 
and L, should vary linearly with the amount  of 
labelled ligand employed in the assay. That this is 
so is illustrated in Fig. 3. 

It is believed that the ability of the model to "fit" 
the data and to predict the effects of changes in exper- 



A practical model for steroid RIA 513 

14 I 

10 

8 

6 

0 
I I I I I 
2 4 6 8 10 

I I I I I 
0 2 4 6 8 10 

h o r m o n e  c o n c e n t r a t i o n  

25 c~ 
2C 

lfl ' ,~ , . . . . . , . .~ . ~  

1 i i 
0 2 4 6 

| 

I I I I I l l 
8 10 0 2 4 6 8 10 
hot mocm c o n c e n t r a t i o n  

Fig. 2. "'Non-convergent" standard curve data. For practical 
reasons [8] the hormone concentration is scaled to be 0-10. 
In all cases illustrated the scaling is 0.08 ng/ml i.e. 10 -= 0.8 
ng/ml. 

When fitting the 4-parameter function 

b 
L n !  = - -  + a 

Cr + X)" 

to the data illustrated the least-square curve-fitting process 
[8] failed to converge to a satisfactory fit. However, when 
the 3-parameter function 

K3 
Lm - -  + K2 

K t + X  
was used the least-squares curve fitting converged and 
produced the best-fit lines as illustrated. Thus, the 3- 
parameter function is preferable to the 4-parameter function 
since the additional exponential parameter is not only 
unnecessary for an acceptable "'fit" to the data (and in some 
cases even inhibits convergence) but also has no apparent 
role in the derivation of the binding function. 

imental conditioqs on the values of the parameters 
together constitute reasonable grounds for accepting 

the model as valid. 
Since the parameters of the model (equation 2) can 

be explicitly, related to the experimental conditions 
employed in an assay, it can be analysed to predict 
the properties of an assay system under any given 

conditions. 
Rearrangement of equation 2 gives 

B 
X = - -  L (3) 

L m -  C 

enabling X to be calculated from Lm once B, L and 
C are known. The variance in X, VIX) at any point 
can be calculated using the approximation (for non- 
linear functions) 

( OX ~ 2 
V(X) ~- \ ~ m J  " V(Lm) 

where V(Lm) is the variance in Lm, 

but it is the coefficient of variation of X, CV(X)= 
which is of greater importance for deter- 

mining the working range of an assay, 

CV(X) - L (1 V/-~Lm) (4) 
B n 

where 

n = X/L. 

In the conventional assay procedure the variance in 
Lm is a combination of two factors, (i) experimental 
errors (e.g. pipetting errors) 

V(Lm)e = (Lm" E) 2 

where E is the coefficient of variation of the exper- 
imental errors and (ii) counting errors (i.e. errors in- 
herent in the random nature of the radioactive decay 
process) 

V(Lm)c = (Lm)2/T 

where T is the total count. 
Thus, the total variance in Lm is 

V(Lm), = V(Lm)e + V(Lm)c = (Lm) 2 (E 2 + I/T) (5) 

hence, the overall coefficient of variation of X is . 

CV(X) - L (1 + n)~ Lm" ~ + I /T (6) 
B n 

Substitution of Lm by equation 2, writing Lo = Lm 
when X = 0 and r = C/Lo leads ultimately to 

C V ( X ) = - - I  + n _ _ . 1  + nr x~ ~ +  I/T (7) 
n 1 - r 
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Fig. 3. The effect of labelled ligand concentration on the 
parameters of the binding function. The derivation of the 
binding function, equation 2, predicts that the parameters 
B, C and L (ordinates) should vary linearly with the 
amount of labelled ligand employed (abscissa) at constant 
antiserum concentration. This is found to be the case as 
illustrated in this example using an anti-estriol-6BSA- 
serum. The parameters are obtained directly as described 

in the text, not by least-squares curve-fitting. 
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The term 

l + n  l + n r  

n 1 - -  r '  

illustrated in Fig. 4, is the error factor, i.e. the factor 
by which the coefficient of variation of Lm must be 
multiplied to give the resultant coefficient of variation 
of X. 

Although the experimental coefficient of variation, 
E, can be regarded as constant, the counting coeffi- 
cient of variation, //T, is clearly only constant if all 
samples are counted until a predetermined number 
of disintegrations are observed. If, as is more com- 
mon, samples are counted for a predetermined time 
then Toc Lm (i.e. the counting error increases as n 
increases) but, provided that l IT  ~, E z, this has little 
effect on the coefficient of variation of X. 

It can be seen that the parameter r is of crucial 
importance in determining the error factor, particu- 
larly at higher n-values. Clearly, for maximum preci- 
sion and the widest working range, r must be kept 
as low as possible by reducing the value of C (i.e. 
increasing the efficiency of the sequestration of free 
from bound steroid) and by increasing the value of 
Lo (i.e. working at the highest antiserum concen- 
tration consistent with the requirement that the anti- 
serum is always saturated). 

At first sight it appears that this model predicts 
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Fig. 4. Error functions. The relationship between coefficients 
of the variation of the procedural errors and the resultant 
coefficient of variation in the measured amount of steroid, 
X, is 

l + n  1 +nr 
CV(X) - -  ~ + I/T (equation 7) 

n l - r  

where n is the ratio unlabelled to labelled steroid, X/L, and r 
is the ratio of residual to bound ligand, C/Lo. The values of 
the error factor. 

l + n  l + n r  

n l - - r  

as functions of n at various values of r are illustrated. 
Typical values for r are: Anti-estrone-6,thyroglobulin- 
serum 0.20; Anti-estradiol-6BSA-serum 0.02; Anti-estra- 
diol-17flBSA-serum 0.08; Anti-estriol-6BSA-serum 0.06; 
Anti-progesterone-ll~BSA-serum 0.06; Anti-testosterone- 
7~BSA-serum 0.06. All antisera supplied through Miles 

Laboratories Ltd., Slough, England. 

that the working range can be reduced ad infinitwn 
simply by reducing L, the amount of labelled steroid 
employed, since the error factor contains only the 
X/L ratio, n, not the absolute value of L. This of 
course, is not actually the case. In practice the lowest 
working range is determined by (a) the specific acti- 
vity of the labelled ligand, which limits the lowest 
practical amount of labelled steroid before the count- 
ing errors become unacceptably high and/or (b) the 
afinity constant of the antiserum which limits the low- 
est practical concentration of antiserum before the 
parameter r becomes unacceptably high. 

DISCUSSION 

The simplified model is, of course, merely a special 
case of the general models [3, 7] and thus has the 
same general properties (e.g. the conditions for maxi- 
mum precision and working range) although there are 
certain differences arising from its application (e.g. the 
antibody concentration is chosen to ensure that it is 
always saturated rather than to give a bound/free 
ligand ratio of 1). Nevertheless, the simplified model 
offers several substantial practical advantages over 
the general models: (i) it provides simple, explicit cri- 
teria for the direct selection of appropriate assay con- 
ditions; (ii) data evaluation (both computation of the 
standard curve and calculation of the ligand concen- 
tration in unknown samples) is extremely simple: em- 
pirical (e.g. legit) transforms are eliminated and, if 
computer facilities are not available, a desk-top calcu- 
lator is sufficient, (iii) the explicit relationship between 
the parameters of the model and the experimental 
conditions enables the performance of the assay to 
be closely monitored. 

(i) The working range of an assay is the range of 
n-values for which the coefficient of variation is less 
than the maximum acceptable value. It can be seen 
from equation 7 that where two n-values, nt and n2, 
have the same coefficient of variation (e.g. the lower 
and upper ends of the working range) they are related 
by nl.n2 = I/r(E 2 assumed constant; 1/T assumed 
constant or insignificant). 

It is clear from Fig. 4 that, under all conditions, 
the coefficient of variation rises very rapidly when 
n < I. Thus, as a convenient "'rule of thumb," the 
lower end of the working range coincides with the 
amount of labelled ligand employed, i.e. n = 1, and 
hence the upper end of the working range is simply 
given by n2 = 1/r. Setting up an assay with known 
characteristics consists, therefore, of three simple 
steps; (1) select the amount of labelled ligand equal 
to the lower end of the desired working range; (2) 
construct a concentration curve (as described earlier) 
to determine the appropriate antibody concentration; 
(3) calculate the value of r from the bound labelled 
ligand (zero antiserum concentration) to determine 
the upper end of the working range (remembering 
that this may be reduced if the counting errors rise 
to significant levels as Lm decreases). 



A practical model for steroid RIA 515 

c p m  

2 0 0 0  

1 0 0 0  

E 3 

I I I 
0 2 4 6 n--'g/m~ 8 

~ * Pr . ]  mOO 

1 I ! J 
2 4 6 8 

2O00 

0 :1 4 6 8 

Fig. 5. Standard curves, • experimental data. - -  
value of the function 

B 
L m =  + C 

L + X  
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where the parameters B, C and L have been obtained 
directly as described in the text, i.e. least-squares curve-fitting 
has NOT been employed. The curves illustrated are for 
anti-estriol-6BSA-serum (E3), anti-progesterone-ll~BSA- 

serum (Pr) and anti-estradiol-17flBSA-serum (E2). 

(ii) The explicit relationships which exist between 
the experimental conditions and the parameters of the 
model makes the computation of standard curves and 
subsequent calculations of unknowns so simple that 
they can readily be done on a desk-top calculator. 

Consider equation 2: 
When I-A,] = 0 (i.e. antibody omitted and buffer 

substituted) C = Lm. Thus inclusion of "no anti- 
serum" controls gives C directly, 

In principle, the value of L can be determined from 
the specific activity of the labelled ligand but it is 
our experience that this may not be sufficiently reli- 
able so the following approach is employed instead 

Let 

Then 

Lo = Lm when X = O 

L2 = Lm when X = L 

B B 
Lo = ~ + C and L 2 = ~-~ -F C. 

Thus, on rearrangement L2 = (Lo + C)/2, i.e. the 
value of L is the value of X on the standard curve 
at which Lm = L2. This method, of course, requires 
that the standard curve be drawn but it is our opinion 
that this is good practice and should be done in any 
case. 

Once C and L are known, B is readily determined 
from Lo = B /L  + C. 

Examples of standard curves calculated in this way 
are shown in Fig. 5. Of course, the model may also 
be used as the basis for iterative least-squares curve- 
fitting in which some or all of the parameters are 
unconstrained and there are some who would argue 
that the values of the parameters are of little conse- 
quence provided that the "fit" is good. Clearly, those 
who have the choice will make their own decision; 
our experience is that, where computational  facilities 

are limited, the approach which has been described 
is simple to employ and provides acceptable results. 

(iii) Radioimmunoassay is a notoriously unpredic- 
table technique, liable to produce spurious results 
without any apparent reason. In the majority of cases 
the quality of the standard curve is the only available 
index of assay performance. The explicit relationships 
which exist between the experimental conditions and 
the parameters of the model confer the advantage that 
aberrant values of the parameters not only provide 
helpful clues as to the nature of the difficulty but  
can also indicate a deterioration in assay performance 
even when the standard curve appears to be satisfac- 
tory and there are no other obvious signs of assay 
malfunction. 

Although RIA is a widely used technique, the lack 
of a simple yet practical model for the assay system 
has meant that in a large number of cases the estab- 
lishment and running of assays has been essentially 
empirical (and may therefore be suboptimal) and the 
calculation of results complex. The model which has 
been proposed is not a radical departure from con- 
ventional RIA theory, merely a special case limited 
by the simple restriction which has been imposed. In 
general, therefore, the properties of the model are 
consistent with currently held views, but the effect 
of the restriction is to simplify its applications so that 
assays can now be designed to have the desired work- 
ing range and data evaluation is reduced to a simple, 
explicit procedure which requires no elaborate com- 
putational facilities. It is these properties which, we 
believe, will make the model of considerable value 
to those working with steroid hormone and other 
homologous radioimmunoassays. 
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APPENDIX 

Derivation of the bindin 9 fimction, equation 1. 

Consider an antibody having j reversible ligand binding 
sites" the law of mass action functions for the ith site are: 

[.AL ]i [ AX]i 
El.i E x i 

[A] ILl]  [A]i [Xf] 

where 

[Lf] and [Xf] are the concentrations of free ligand, 
labelled and unlabelled respectively, 

[A]i is the concentration of the unoccupied 
ith binding site, 

[AL]iand [AX]i are the concentration of the ith binding 
sites occupied by labelled and unlabelled 
ligand. 

[AL]i [AX]i 
[AJi = - -  

ELi [Lf] Exi [Xf] 

i.e. 

ELi 
[Xf] [AL]i = [Lf] "~x i" [AX]i 

When L and X are chemically and immunologically 
indistinguishable, as is essentially the case with tritium- 
labelled steroid hormones, Ezi ~- Exi, hence, summing for 
all j sites 

i=j i=i 
EXf] Y [AL]i = ELf] Y" EAX]i 

i=1 i=1 

But 

[L,] ---- [Ly] + E[AL]iand [X,] = IX f]  + E[AX]i 

where [Lt] and IX,] are the total concentrations (free and 
bound) of L and X, hence 

( [ x o  - X[AX],) X[AL]i = ([L,I - )~[aL]0 x [ a x ] i  

i.e. 

IX,]- Z[AL] i = [L,] Z[AX] i 

The total (occupied and unoccupied) concentration of 
binding sites, [A,], is: 

[A,] = E[AL], + Z[AX]i + Z[A]i. 

However, under conditions such that the antibody is 
effectively saturated with ligand, Z[A]i  is negligible, hence 

[A,] - E[AL]I + Z[AX]i. 

Thus 

i.e. 

whence 

[X,] ZEAL], ~- [L,] {[A,] - E [ALt ]  

{[X,] + [L,]} E[AL],-'- [L,].[A,] 

E[AL], ~ [A,] 

i.e. Equation 1 in main text. 

[L, ] 

IX, ]  + [L,] 

Q.E.D. 


